Aluminium can provoke cellular damage in different tissues, cross the blood organs through blood. It can cause nerve cell degeneration if enter into the body, additives and consumer products exposed to aluminium through pharmaceuticals, utensils, food (resulting oxidative damage and related health adverse effects recognized to be production of reactive oxygen species mechanism involved in heavy injuries and risk of cancer and diabetes. The general including cardiovascular disorders, neuronal damage, renal injuries and risk of cancer and diabetes. The general mechanism involved in heavy metal-induced toxicity is recognized to be production of reactive oxygen species resulting oxidative damage and related health adverse effects (Rehman et al., 2017). Aluminium is one of the most abundant elements in the environment. Human beings are widely exposed to aluminium through pharmaceuticals, utensils, food additives and consumer products (Newairy et al., 2009). Once enter into the body, it can be absorbed and reach to various organs through blood. It can cause nerve cell degeneration if cross the blood-brain barrier and accumulate in the brain. Aluminium can provoke cellular damage in different tissues, including the liver and brain by enhancing the level of oxidative stress. A number of studies have reported toxic effects in humans or laboratory animals induced by aluminium exposure (Pandey and Jain, 2013). It is well known that aluminium overload can cause severe neurodegeneration by enhancing oxidative stress and inflammation. Although a number of studies have also been reported decreased epididymal sperm count, viability and motility (Exley, 2016; Ige and Akhigbe, 2012) as well as disrupted steroid genesis (Pandey et al., 2014; Guo et al., 2001) in aluminium exposed organisms. However, there are only a few studies reporting the effects of aluminium on biochemical and antioxidant parameters as well as reversibility after treatment withdrawal so the present study is conducted to estimate the rate of lipid peroxidation and the status of antioxidants and biochemical parameters of testis in aluminium chloride treated rats as well as recovery of toxic effects after 60 days of treatment withdrawal in highest dose group.

INTRODUCTION

Metals are naturally occurring elements that are found throughout the earth’s crust. Metals enter the environment by natural and anthropogenic means. Any metal may be considered as “contaminant” if it occurs in a concentration that causes a negative effect on human or environment. Humans are primarily exposed to these contaminants in the workplace or in the living space through the consumption of contaminated food and water which may result in a series of adverse health issues including cardiovascular disorders, neuronal damage, renal injuries and risk of cancer and diabetes. The general mechanism involved in heavy metal-induced toxicity is recognized to be production of reactive oxygen species resulting oxidative damage and related health adverse effects (Rehman et al., 2017). Aluminium is one of the most abundant elements in the environment. Human beings are widely exposed to aluminium through pharmaceuticals, utensils, food additives and consumer products (Newairy et al., 2009). Once enter into the body, it can be absorbed and reach to various organs through blood. It can cause nerve cell degeneration if cross the blood-brain barrier and accumulate in the brain. Aluminium can provoke cellular damage in different tissues, including the liver and brain by enhancing the level of oxidative stress. A number of studies have reported toxic effects in humans or laboratory animals induced by aluminium exposure (Pandey and Jain, 2013). It is well known that aluminium overload can cause severe neurodegeneration by enhancing oxidative stress and inflammation. Although a number of studies have also been reported decreased epididymal sperm count, viability and motility (Exley, 2016; Ige and Akhigbe, 2012) as well as disrupted steroid genesis (Pandey et al., 2014; Guo et al., 2001) in aluminium exposed organisms. However, there are only a few studies reporting the effects of aluminium on biochemical and antioxidant parameters as well as reversibility after treatment withdrawal so the present study is conducted to estimate the rate of lipid peroxidation and the status of antioxidants and biochemical parameters of testis in aluminium chloride treated rats as well as recovery of toxic effects after 60 days of treatment withdrawal in highest dose group.

MATERIAL AND METHODS

Experimental animals

Colony bred adult, healthy male albino rats (Wistar strain) were used for experimental purpose. A colony was maintained under standard laboratory condition of light-dark cycle (14hr-10hr) and temperature (22±3°C).
Table 1. Tissue biochemistry in testis of rats treated with various doses of aluminium chloride

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Total protein (mg/g)</th>
<th>Glycogen (mg/g)</th>
<th>Sialic acid (mg/g)</th>
<th>Total cholesterol (mg/g)</th>
<th>Acid phosphatase (KA unit)</th>
<th>Alkaline phosphatase (KA unit)</th>
<th>Fructose (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group-I</td>
<td>216.37 ± 5.81</td>
<td>3.69 ± 0.09</td>
<td>5.06 ± 0.14</td>
<td>6.59 ± 0.18</td>
<td>12.96 ± 0.18</td>
<td>54.27 ± 0.24</td>
<td>5.79</td>
</tr>
<tr>
<td>Control (vehicle)</td>
<td>216.37 ± 5.81</td>
<td>3.69 ± 0.09</td>
<td>5.06 ± 0.14</td>
<td>6.59 ± 0.18</td>
<td>12.96 ± 0.18</td>
<td>54.27 ± 0.24</td>
<td>5.79</td>
</tr>
<tr>
<td>Group-II</td>
<td>195.87 ± 4.08</td>
<td>4.50 ± 0.28</td>
<td>7.21 ± 0.19</td>
<td>11.84 ± 0.31</td>
<td>47.25 ± 0.23</td>
<td>4.96</td>
<td></td>
</tr>
<tr>
<td>Aluminium chloride (30 mg/kg b.wt./day)</td>
<td>195.87 ± 4.08</td>
<td>4.50 ± 0.28</td>
<td>7.21 ± 0.19</td>
<td>11.84 ± 0.31</td>
<td>47.25 ± 0.23</td>
<td>4.96</td>
<td></td>
</tr>
<tr>
<td>Group-III</td>
<td>178.75 ± 5.35</td>
<td>4.24 ± 0.15</td>
<td>8.05 ± 0.23</td>
<td>10.25 ± 0.36</td>
<td>43.72 ± 0.14</td>
<td>4.68</td>
<td></td>
</tr>
<tr>
<td>Aluminium chloride (60 mg/kg b.wt./day)</td>
<td>178.75 ± 5.35</td>
<td>4.24 ± 0.15</td>
<td>8.05 ± 0.23</td>
<td>10.25 ± 0.36</td>
<td>43.72 ± 0.14</td>
<td>4.68</td>
<td></td>
</tr>
<tr>
<td>Group-IV</td>
<td>156.62 ± 4.76</td>
<td>3.64 ± 0.13</td>
<td>7.06 ± 0.20</td>
<td>35.92 ± 0.42</td>
<td>3.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium chloride (90 mg/kg b.wt./day)</td>
<td>156.62 ± 4.76</td>
<td>3.64 ± 0.13</td>
<td>7.06 ± 0.20</td>
<td>35.92 ± 0.42</td>
<td>3.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery-Group (after 60 days of treatment withdrawal)</td>
<td>187.87 ± 5.87</td>
<td>4.36 ± 0.15</td>
<td>7.43 ± 0.18</td>
<td>45.21 ± 0.28</td>
<td>4.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Levels of significance: ns- Non significant; a- P<0.05; b- P<0.01; c- P<0.001, aluminium chloride treated groups compared with control group.
+ non significant; *- P<0.05; **- P<0.01; ***- P<0.001, recovery group compared with group-IV.
(One way ANOVA followed by LSD multiple comparison test)

Table 2. Lipid peroxidation and antioxidant defense system markers in testis of rats treated with various doses of aluminium chloride

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Lipid peroxidation (n mol MDA/mg tissue)</th>
<th>SOD (unit/mg protein)</th>
<th>Glutathione (m mol/g tissue)</th>
<th>Ascorbic acid (mg/g tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group-I</td>
<td>1.59±0.13</td>
<td>8.54±0.17</td>
<td>2.78±0.09</td>
<td>1.36±0.06</td>
</tr>
<tr>
<td>Control (vehicle)</td>
<td>1.59±0.13</td>
<td>8.54±0.17</td>
<td>2.78±0.09</td>
<td>1.36±0.06</td>
</tr>
<tr>
<td>Group-II</td>
<td>2.06±0.10 b</td>
<td>7.68±0.26 a</td>
<td>2.38±0.13 b</td>
<td>1.07±0.05 b</td>
</tr>
<tr>
<td>Aluminium chloride (30 mg/kg b.wt./day)</td>
<td>2.06±0.10 b</td>
<td>7.68±0.26 a</td>
<td>2.38±0.13 b</td>
<td>1.07±0.05 b</td>
</tr>
<tr>
<td>Group-III</td>
<td>2.27±0.12 c</td>
<td>7.27±0.21 c</td>
<td>2.19±0.11 c</td>
<td>0.86±0.05 c</td>
</tr>
<tr>
<td>Aluminium chloride (60 mg/kg b.wt./day)</td>
<td>2.27±0.12 c</td>
<td>7.27±0.21 c</td>
<td>2.19±0.11 c</td>
<td>0.86±0.05 c</td>
</tr>
<tr>
<td>Group-IV</td>
<td>2.86±0.11 c</td>
<td>6.34±0.11 c</td>
<td>1.66±0.09 c</td>
<td>0.65±0.06 c</td>
</tr>
<tr>
<td>Aluminium chloride (90 mg/kg b.wt./day)</td>
<td>2.86±0.11 c</td>
<td>6.34±0.11 c</td>
<td>1.66±0.09 c</td>
<td>0.65±0.06 c</td>
</tr>
<tr>
<td>Recovery-Group (after 60 days of treatment withdrawal)</td>
<td>2.18±0.13**</td>
<td>7.49±0.25**</td>
<td>2.29±0.09**</td>
<td>1.06±0.04**</td>
</tr>
</tbody>
</table>

Levels of significance: Values represent mean ± SEM (n=8); ns- Non significant; a- P<0.05; b- P<0.01; c- P<0.001, aluminium chloride treated groups compared with control group.
+ non significant; *- P<0.05; **- P<0.01; ***- P<0.001, recovery group compared with group-IV.
(One way ANOVA followed by LSD multiple comparison test)

Rats were provided with water and a nutritionally adequate pallet diet ad libitum in the animal house facility. The animal care and handling were done as per the Committee for the Purpose of Control and Supervision on Experiments on Animals (CPCSEA) regulations. The study was permitted by the Institutional Animal Ethical Committee of the Department of Zoology, University of Rajasthan, Jaipur.

Experiment design

Wistar male rats were divided into four groups and were treated for 60 days as follows: Group I served as control and received vehicle (distilled water, 0.5 ml/rat/day), while rats of Group II, III and IV were treated orally with aluminium chloride (30, 60 and 90mg/kg b.wt./day dissolved in distilled water; respectively). Each group has 8 rats except group IV which has 16 rats. Half of the rats of group IV sacrificed on day 60th and half were left untreated for next 60 days to observe recovery of the adverse effects in highest dose group. The rats were sacrificed at a fasting state twenty four hours after administration of the last dose under ether anaesthesia. Testes were dissected out and cleaned off from adherent fat and blood clot and were kept frozen at -20º -70º C for biochemical estimations. Total protein (Mayyas et al., 2005), Glycogen (Lowry et al., 1951), Sialic acid (Montgomery, 1957), Total Cholesterol (Warren, 1959), Acid phosphatase Zlatkis et al., 1953, Alkaline phosphatase Zlatkis et al., 1953, Lipid peroxidation (TBARs) (Kind et al., 1954), Superoxide dismutase (Ohkawa et al., 1979), Glutathione (Marklund and Marklund, 1979) and Ascorbic acid (Zlatkis et al., 1953) were analyzed in testis tissue.

RESULTS AND OBSERVATIONS

Table 1 show that treatment with aluminium chloride caused a dose dependent decline in the concentration of total protein and sialic acid as well as in the activity of acid and alkaline phosphatase. On the other hand, the testicular glycogen and total cholesterol concentration denoted a significant dose dependent increase in rats treated with aluminium chloride at three different doses, when compared with control group. After 60 days of cessation of treatment, the rats of recovery group showed significant elevation in sialic acid concentration and in the activity of both phosphatases while a significant decline was observed in concentration of both glycogen and total cholesterol in testis as compared to rats of Group-IV (90 mg/kg b.wt./day), although it was still low when compared to control rats. Results indicated elevation in lipid peroxidation (TBARs) while a significant decline in the activity of superoxide dismutase (SOD) as well as in the content of glutathione and ascorbic acid in a dose dependent manner in testis of rats treated with aluminium chloride at three different doses. After 60 days of treatment withdrawal, there was a significant decrease in lipid peroxidation (TBARs) and significant increase in the level of antioxidant markers in testis of rats.
recovery group rats as compared to rats of the highest dose group. (Table 2)

DISCUSSION

Testicular secretory constituents like protein, cholesterol, sialic acid and glycogen can be used to determine the functional capacity of the testes (Roe and Kuether, 1949). Testicular protein content is considered as one of the constituent that is essential for testicular development and spermatogenesis (Aladakatti et al., 2010). In present study observed reduction in protein content may be due to diminished secretory activity of the testis, disturbed protein metabolism or lessen number of germ cells in testis (Weinbauer et al., 2010; Fyiad, 2007). Decreased testicular protein content in aluminum exposed rats has also reported by other researchers also (Yousef and Salama, 2009). In recovery group, improved secretory activity of testis might be responsible for restoration in the protein content of testis towards normal side. Similar recovery in testicular content was observed after treatment withdrawal in aluminium treated mice (Rawy et al., 2015; Chinoy et al., 2015a). Testicular glycogen provides carbohydrate reserves for spermatogenic cells in seminiferous tubules and is considered to be associated with spermatogenesis, gonadal maturation and proper functioning (Chinoy et al., 2005b). In the present study, the aluminium chloride treated rats showed significant increase in the concentration of glycogenin the testis which might be due to arrested spermatogenesis or lowering of the rate of glycolysis by virtue of inhibition of enzyme activity. El Demerdash (Datta et al., 1988) suggested that decreased activity of phosphorylase (an enzyme involved in glycogenolysis) in testis might be responsible for significant enhancement in the levels of glycogen in testis. The increased level of glycogen in testis showed significant recovery after 60 days of treatment withdrawal by virtue of increased utilization by spermatozoa. Sialic acid (N-acetylneuraminic acid) acts as a ‘lubricant’ to facilitate the movement of sperm and to reduce friction among spermatozoa in testis (El-Demerdash, 2004). A significant dose dependent decrease in the concentration of sialic acid observed in testis might be correlated with androgen level. Similar decline was observed in testicular sialic acid content due to reduced androgen level and sperm count in metal treated rats (Riar et al., 1973; Pandey et al., 2015). The level of sialic acid was significantly improved in aluminium chloride treated rats after 60 days of treatment withdrawal probably due to restoration of androgen level.

Testicular cells require cholesterol for membrane biogenesis, cell signaling and as a precursor required for androgen synthesis (Jain et al., 2015). Guo et al., 2010 reported that excessive NO compounds generated by aluminium exposure exert inhibitory action on the production of testicular adenosine 3, 5- cyclic monophosphate (cAMP) which aided in the transport of cholesterol to the inner mitochondrial membrane. So it might be suggested that increased cholesterol content in testis might be due to disturbed cholesterol transport. Abdel-Moniem, (Guo et al., 2011a) also observed the accumulation of multiple lipid droplets in Leydig cells which also supports the underutilization of cholesterol in aluminium treated mice. After 60 days of treatment withdrawal, increased level of cholesterol content in testis showed a significant decline probably due to its consumption in androgen biosynthesis by the Leydig cells. Acid phosphatase (ACP) is extensively distributed in lysosomes of germ cells, Sertoli cells and Leydig cells where it provide phosphate to germ cells to meet their high energy requirements, regulate seminiferous tubule functioning. In Leydig cells, it is involved in the protein synthesis by abdution of sex hormones (Abdel-Moneim, 2013; Peruquet et al., 2010). Reduced activity of ACP in testis might be a consequence of decreased testicular steroidogenesis in the treated-rats and this may be correlated with the reduced secretion of gonadotrophins. Similar decline in the activity of testicular acid phosphatase was observed in animals treated with aluminium (Datta et al., 1988). Alkaline phosphatase (ALP) plays an essential role in the transport of material from Sertoli cells to various germ cells and in differentiation and proliferation of the germinall epithelium (Porawksi et al., 2004). The reduction in the testicular ALP activity observed in present study might be correlated with the reduced germ cell population. Fyiad, 19 suggested that aluminium, a trivalent cation has a high affinity for negatively charged groups. Hence, it has been proposed that aluminium preferentially reacts with nucleic acid and inhibit activities of enzymes such as ACP and ALP. Alkaline phosphatase requires Mg2+ and Zn2+ for stability and catalysis. Reduction in the activity of ALP in testis could be due to incorporation or interaction of metals within the place of Mg or Zn which resulted in the alteration of steric configuration of phosphatase (Singer et al., 1998). Reduced activity of ACP and ALP in testis was significantly but partially improved in rats after 60 days of treatment withdrawal suggesting partial modulation of the degenerative effects.

Antioxidant status of gonadal tissue acts as an important marker to determine male factor infertility. Estimation of end products of lipid peroxidation such as Malondialdehyde (MDA) reflects the extent of oxidative damage to cellular structures (Batra et al., 2001). An increase in lipid peroxidation in the test is observed in study can be correlated with concurrent increase in the production of free radicals or reduced content/ activity of antioxidants in testis. Similar elevation in the levels of thiobarbituric acid-reactive substances (TBARs) has been observed in testis of aluminium treated rats (Fyiad, 2007). Superoxide dismutase (SOD) acts as a major protective system against free radical injury in male reproductive system (Sharma and Agarwal, 1996). Decline in the activity of SOD enzyme in testis may be due to excess consumption during the breakdown of free radicals and high level of H2O2. Higher intracellular concentrations of aluminium resulted in decreased synthesis of the enzyme proteins which leads to reduction in the activity of SOD (De Lamirande and Gagnon, 1993). Other metals like chromium (Nehru and Anand, 2005), cadmium (Subramanian et al., 2006) and mercury (Pires et al., 2013) have also been reported to inhibit SOD activity significantly in testicular tissue of various experimental animals. The SOD activity in testis was significantly but partially improved in rats after 60 days of treatment withdrawal suggesting partial recovery of the degenerative effects by virtue of partial alleviation of free radicals. Increased levels of TBARs in testis of aluminium chloride treated rats were significantly returned towards normal side after 60 days of cessation of treatment suggesting alleviation of oxidative stress to some extent. Glutathione is the most abundant non-thiol protein in mammalian cells which protects plasma membrane from lipid peroxidation, scavenges superoxide, and prevents O2 formation (El-Desoky et al., 2013). Significant dose dependent decline in GSH content in testis may be due to increased utilization in trapping free radicals generated due to toxic effect of these metals in testis. It is postulated that ROS has a greater affinity for the thiol...
groups of biomolecules, thus depleting intracellular thiols inducing reduced GSH content in testicular tissue which made spermatogenic cells more vulnerable to free radicals resulting in lessen sperm count (Irvine, 1996). Aluminium might affect the glutathione (GSH) synthesis by decreasing the activity of glutathione-synthase (GS). Likewise, a slowing down in the conversion of oxidized- to-reduced form of GSH due to the inhibition of glutathione-reductase (GR) by aluminium could explain the increment in GSSG/GSH ratio (Fyiad, 2007; Aitken, 2013). Nehru and Anand (De Lamirande and Gagnon, 1993) suggested that aluminium exposure decrease the ATPase activity which in turn could result in glutathione synthesis alteration. Ascorbic acid, a potent water soluble antioxidant regulates the normal integrity and function of the testis by scavenging/neutralizing an array of reactive oxygen species (Yousef, 2004). Decreased concentration of ascorbic acid in present study indicates the subnormal scavenging of lipid peroxidation in testis of aluminium chloride exposed rats (Dawson et al., 1990). The concentration or activity of antioxidant were partially but significantly increased in recovery group after 60 days of treatment withdrawal suggesting reduced lipid peroxidation and free radical generation concomitantly with an improvement of antioxidant defense system.

Conclusion

On the basis of present study, it can be concluded that Aluminium chloride distorted testicular biochemical milieu in a dose dependent manner which can in turn affect male fertility by disturbing spermatogenesis and steroid genesis. However, toxic effects induced by aluminium chloride can be partially recovered after treatment withdrawal.

Acknowledgment

The authors are grateful to Head of the Department and Center for Advances Studies, Department of Zoology, University of Rajasthan for providing necessary facilities. Thanks are due to University Grants Commission (UGC), New Delhi for providing Meritorious Research Fellowship to Ms. Geeta Pandey and Emeritus Fellowship to Dr. G.C Jain

REFERENCES
